Logique et programmation logique

Sommaire

1.	Rappels	. 1
	1.a. Interprétation des formules	1
	1.b. Substitution	2
2.	Système formel	2
	2.a. Système de Hilbert	

1. Rappels

Formule Définition 1

Elle est définie inductivement de la manière suivante :

- Des éléments de base qui sont des variables propositionnelles : $\{a, b, ..., A, B\}$
- Des règles

1.a. Interprétation des formules

Interprétation Définition 2

Une interprétation I est une valeur booléenne sur les variables propositionnelles I(F):

- Si F est une variable, alors sa valeur est donnée, sinon si :
 - $F = \neg A$, alors I(F) = 1 I(A)
 - $F = A \rightarrow B$, alors I(F) = 1 ssi I(A) = 0 ou I(B) = 0
 - $F = A \wedge B$, alors $I(F) = \min(I(A), I(B))$
 - $F = A \vee B$, alors $I(F) = \max(I(A), I(B))$
- F est satisfiable si $\exists I, I(F) = 1$
- F est valide / une tautologie si $\forall I, I(F) = 1$
- F est contradictoire si $\forall I, I(F) = 0$

Conséquence et équivalence logique

Définition 3

- Conséquence logique : $A \models B$ ssi $\forall I, I(A) = 1$, alors I(B) = 1
- Équivalence logique : $A \equiv B$ ssi $A \models B$ et $B \models A$

Théorème 4

 $A \equiv B \operatorname{ssi} A \leftrightarrow B \operatorname{est} \operatorname{valide}$

Forme Normale Conjonctive

Définition 5

Une formule est sous *FNC* si elle s'écrit comme conjonction de clauses, chaque clause étant une disjonction de littéraux, et un littéral étant une variable ou sa négation.

Exemple 6

 $(\neg a \lor b \land \neg c) \land (a \lor \neg b)$ est sous *FNC*

Théorème 7

Pour toute formule F, il existe F' sous FNC telle que $F \equiv F'$.

1.b. Substitution

Définition 8

 $F[x \leftarrow G]$ la formule F dans laquelle la var x est substituée par G est définie par :

- Si F = p alors :
 - Si $p = x, F[x \leftarrow G] = G$
 - Si $p \neq x, F[x \leftarrow G] = F$
- Si $F = A \to B$ alors $F[x \leftarrow G] = A[x \leftarrow G] \to B[x \leftarrow G]$
- [...]

Théorème 9

Si F est valide, alors $F[x \leftarrow G]$ l'est aussi.

2. Système formel

Définition 10

- Un système formel est un ensemble d'axiomes ${\mathcal A}$ et de règles inductives ${\mathcal R}$
- Un **théorème** est une formule construite à partir des axiomes en appliquant les règles de $\mathcal R$
- La preuve d'un théorème est un arbre qui a comme feuilles les axiomes et comme nœuds les règles

Consider the following tree:

$$\frac{\Pi_1 - \Pi_2}{\varphi}$$
 i Π constitutes a derivation of φ .

Exemple 11

$$\mathcal{A}:\{(0,0)\}$$
 et $\mathcal{R}:\frac{(x,y)}{(x+1,y+1)}$

Complétude et correction

Définition 12

Un système, muni d'une interprétation :

- Est complet si chaque formule valide est un théorème
- Est correct si chaque théorème est une formule valide

Théorème et preuve

Définition 13

- On note $\vdash F$ le fait que F est un théorème
- On note $\{P_1,...,P_n\} \vdash F$ le fait d'avoir une preuve dans laquelle $P_1,...,P_n$ peuvent être des feuilles

Observation Définition 14

 $\vdash F \quad \leftrightarrow \quad \vDash F \text{ signifie que le système est correct et complet}.$

2.a. Système de Hilbert

$$\mathcal{A}: K = A \rightarrow (B \rightarrow A) \text{ et } S = (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$\mathcal{R}: \frac{\mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{B}}{\mathbf{B}} \text{MP (Modus Ponens)}$$

Méta théorème 15

Le système de Hilbert est correct.

Méta preuve 16

Par induction structurelle :

Axiomes: